The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives.

Tony Wu
E&E Section Manager
SGS-CSTC (Shanghai) Co., Ltd.

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of Client’s instructions, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.
2 Version

<table>
<thead>
<tr>
<th>Revision Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
</tr>
<tr>
<td>00</td>
</tr>
</tbody>
</table>

Authorized for issue by:

Engineer

Terry Hou

Print Name

Date: (April 26, 2013)

Clerk

Susie Liu

Print Name

Date: (April 27, 2013)

Reviewer

Keny Xu

Print Name

Date: (April 28, 2013)

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of Client’s instructions, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.
3 Test Summary

ELECTROMAGNETIC INTERFERENCE (EMI)

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Requirement</th>
<th>Test Method</th>
<th>Class / Severity</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated Emission, 30MHz to 1GHz</td>
<td>EN 61000-6-3:2007+ A1:2011</td>
<td>CISPR 16-2-3:2006</td>
<td>Table 1 Column 3 of EN61000-6-3</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Electromagnetic Susceptibility (EMS)

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Requirement</th>
<th>Test Method</th>
<th>Class / Severity</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>EN 61000-6-1:2007</td>
<td>EN 61000-4-2:2009</td>
<td>Contact ± 4 kV Air ± 8 kV</td>
<td>PASS</td>
</tr>
<tr>
<td>Radiated Immunity</td>
<td>EN 61000-6-1:2007</td>
<td>EN 61000-4-3:2006 +A1:2008+A2:2010</td>
<td>(80MHz to 1GHz, 1.4GHz to 2GHz) 3 V/m, 80%, 1kHz Amp. Mod. (2GHz to 2.7GHz) 1V/m, 80%, 1kHz Amp. Mod.</td>
<td>PASS</td>
</tr>
<tr>
<td>Power frequency magnetic fields</td>
<td>EN 61000-6-1:2007</td>
<td>EN 61000-4-8:2010</td>
<td>50/60Hz, 3A/m</td>
<td>N/A**</td>
</tr>
</tbody>
</table>

Remark:
N/A: Not applicable.

Note:**The Power-frequency magnetic field test will not apply to the equipment containing no components susceptible to magnetic fields, such as Hall elements or magnetic field sensors, according to EN 61000-6-1.
4 Contents

1 COVER PAGE .. 1

2 VERSION ... 2

3 TEST SUMMARY ... 3

4 CONTENTS ... 4

5 GENERAL INFORMATION ... 5

5.1 Client Information .. 5

5.2 General Description of E.U.T. ... 5

5.3 Details of E.U.T. .. 5

5.4 Description of Support Units ... 5

5.5 Deviation from Standards .. 5

5.6 Abnormalities from Standard Conditions ... 5

5.7 Monitoring of EUT for All Immunity Test ... 5

5.8 Test Location ... 5

5.9 Test Facility .. 6

5.10 Measurement Uncertainty .. 7

6 EQUIPMENT LIST .. 8

7 EMISSION TEST RESULTS .. 10

7.1 Radiated Emissions, 30MHz to 1GHz .. 10

8 IMMUNITY TEST RESULTS .. 14

8.1 Performance Criteria Description in Clause 4 of EN 61000-6-1 .. 14

8.2 Electrostatic Discharge (ESD) .. 15

8.3 Radiated Immunity .. 18

9 PHOTOGRAPHS .. 21

9.1 Radiated Emission Test Setup .. 21

9.2 ESD Test Setup .. 21

9.3 Radiated Immunity Test Setup ... 22

10 EUT CONSTRUCTIONAL DETAILS ... 23

10.1 Exterior of EUT ... 23
5 General Information

5.1 Client Information

Applicant: GOLDEN MOTOR TECHNOLOGY CO., LTD
Address of Applicant: Block 8, Modern Industrial Center, 801 Changwu Middle Road, Changzhou, Jiangsu, China 213164
Manufacturer: Not supplied by the client.
Address of Manufacturer: Not supplied by the client.
Factory: Not supplied by the client.
Address of Factory: Not supplied by the client.

5.2 General Description of E.U.T.

Product Name: HUB MOTOR
Model No.: MINI PIE MOTOR

5.3 Details of E.U.T.

Power Supply: DC 36V
Cable Type: DC Cable About 0.50m Length (2 Wires)
Function: Running mode
Running mode: Keep the motor running continuously.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Deviation from Standards

None.

5.6 Abnormalities from Standard Conditions

None.

5.7 Monitoring of EUT for All Immunity Test

Audio: None
Visual: Working status of the EUT.

5.8 Test Location

All tests were performed at:
SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab
No.588 West Jindu Road, Songjiang District, Shanghai, China. 201612.
Tel: +86 21 6191 5666
Fax: +86 21 6191 5678
No tests were sub-contracted.
5.9 Test Facility

- **CNAS (No. CNAS L0599)**

- **FCC – Registration No.: 402683**
 SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683, Expiry Date: 2015-02-22.

- **Industry Canada (IC) – IC Assigned Code: 8617A**
 The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A. Expiry Date: 2014-09-20.

- **VCCI (Member No.: 3061)**
 The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-3868 and C-4336 respectively. Date of Registration: 2012-05-29. Date of Expiry: 2015-05-28.
5.10 Measurement Uncertainty

According to CISPR 16-4-2.

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Frequency Range</th>
<th>Measurement Uncertainty</th>
<th>U_{CISPR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducted Emission at mains port using AMN</td>
<td>9kHz-150kHz</td>
<td>3.2dB</td>
<td>3.8dB</td>
</tr>
<tr>
<td>Conducted Emission at mains port using AMN</td>
<td>150kHz-30MHz</td>
<td>2.6dB</td>
<td>3.4dB</td>
</tr>
<tr>
<td>Conducted Emission at mains port using VP</td>
<td>9kHz-30MHz</td>
<td>3.9dB</td>
<td>2.9dB</td>
</tr>
<tr>
<td>Conducted Emission at telecommunication port using AAN</td>
<td>150kHz-30MHz</td>
<td>4.5dB</td>
<td>5.0dB</td>
</tr>
<tr>
<td>Radiated Emission</td>
<td>30MHz-1000MHz</td>
<td>4.3dB</td>
<td>6.3dB</td>
</tr>
<tr>
<td>Radiated Emission</td>
<td>1GHz-18GHz</td>
<td>4.5dB</td>
<td></td>
</tr>
<tr>
<td>Disturbance Power</td>
<td>30MHz-300MHz</td>
<td>2.6dB</td>
<td>4.5dB</td>
</tr>
</tbody>
</table>

Remark:
- AMN – Artificial Mains Network
- VP – Voltage Probe
- ANN – Asymmetric Artificial Network

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

*Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.***
6 Equipment list

Radiated Emission

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Cal. Date</th>
<th>Cal.Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EMI test receiver</td>
<td>Rohde & Schwarz</td>
<td>ESU40</td>
<td>100109</td>
<td>2012-05-15</td>
<td>2013-05-14</td>
</tr>
<tr>
<td>2</td>
<td>Antenna</td>
<td>SCHWARZBECK</td>
<td>VULB916</td>
<td>9168-313</td>
<td>2013-03-07</td>
<td>2014-03-06</td>
</tr>
<tr>
<td>3</td>
<td>CONTROLER</td>
<td>INNCO</td>
<td>CO200</td>
<td>474</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>Antenna</td>
<td>SCHWARZBECK</td>
<td>BBHA912</td>
<td>9120D-679</td>
<td>2013-03-07</td>
<td>2014-03-06</td>
</tr>
<tr>
<td>5</td>
<td>Antenna</td>
<td>SCHWARZBECK</td>
<td>BBHA917</td>
<td>9170-373</td>
<td>2013-03-07</td>
<td>2014-03-06</td>
</tr>
<tr>
<td>6</td>
<td>Low noise amplifier</td>
<td>LNA6900</td>
<td>TESEQ</td>
<td>71033</td>
<td>2013-02-23</td>
<td>2014-02-22</td>
</tr>
</tbody>
</table>

Electrostatic Discharge Test

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Cal. Date</th>
<th>Cal.Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrostatic Discharge Simulator</td>
<td>TESEQ</td>
<td>NSG 437</td>
<td>468</td>
<td>2012-08-13</td>
<td>2013-08-12</td>
</tr>
</tbody>
</table>
Radiated Immunity

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Cal. Date</th>
<th>Cal. Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single Generator</td>
<td>Rohde & Schwarz</td>
<td>SMR40</td>
<td>100555</td>
<td>2012-04-12</td>
<td>2013-04-11</td>
</tr>
<tr>
<td>2</td>
<td>Calibrated Stacked Lagarithmic-Periodic Test-Antenna</td>
<td>SCHWARIBFCK</td>
<td>STLP 9128D</td>
<td>9128 D 055</td>
<td>2012-11-13</td>
<td>2013-11-12</td>
</tr>
<tr>
<td>4</td>
<td>Power Amplifiers</td>
<td>MILMEGA</td>
<td>80RF1000-250</td>
<td>1053058</td>
<td>2012-11-29</td>
<td>2013-11-28</td>
</tr>
<tr>
<td>5</td>
<td>Power Amplifiers</td>
<td>MILMEGA</td>
<td>AS0840-5-55</td>
<td>1053059</td>
<td>2012-11-23</td>
<td>2013-11-22</td>
</tr>
<tr>
<td>6</td>
<td>Power Meter</td>
<td>Rohde & Schwarz</td>
<td>NRP</td>
<td>101641</td>
<td>2013-02-23</td>
<td>2014-02-22</td>
</tr>
<tr>
<td>7</td>
<td>Electromagnetic Field Probe</td>
<td>ETS-Lindgren</td>
<td>HI-6105</td>
<td>D445 050S</td>
<td>2012-10-17</td>
<td>2013-10-16</td>
</tr>
</tbody>
</table>

General Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Test Equipment</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Cal. Date</th>
<th>Cal. Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital pressure meter</td>
<td>YONGZHI</td>
<td>DYM3-01</td>
<td>101012</td>
<td>2012-01-16</td>
<td>2014-01-15</td>
</tr>
<tr>
<td>2</td>
<td>Digital Multimeter</td>
<td>FLUKE</td>
<td>17B</td>
<td>10560713</td>
<td>2013-01-07</td>
<td>2014-01-06</td>
</tr>
<tr>
<td>3</td>
<td>Temperature & humidity recorder</td>
<td>ShangHai weather meter work</td>
<td>ZJ 1-2B</td>
<td>0804081 0802150 0805177</td>
<td>2012-08-27</td>
<td>2013-08-26</td>
</tr>
</tbody>
</table>
7 Emission Test Results

7.1 Radiated Emissions, 30MHz to 1GHz

Test Requirement: EN 61000-6-3
Test Method: CISPR 16-2-3
Test Date: April 26, 2013
Test voltage: DC 36V
Frequency Range: 30MHz to 1GHz
Measurement Distance: 3m
Detector: Peak for pre-scan (120kHz resolution bandwidth)
Quasi-Peak if maximised peak within 6dB of limit

Limit:

<table>
<thead>
<tr>
<th>Frequency range MHz</th>
<th>Quasi-peak limits dB (µV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 to 230</td>
<td>40</td>
</tr>
<tr>
<td>230 to 1000</td>
<td>47</td>
</tr>
</tbody>
</table>

At transitional frequencies the lower limit applies.

7.1.1 E.U.T. Operation

Operating Environment:
Temperature: 20.3°C
Humidity: 50.0% RH
Atmospheric Pressure: 102.4 kPa
Test mode: Running mode

Pre-scan was performed with peak detected on all ports. Quasi-peak measurements was performed at the frequencies at which maximum peak emission level were detected.
Please see the attached Quasi-peak test results.
Level = Read Level + Antenna Factor + Cable Loss – Preamp Factor.
7.1.2 Test Setup and Procedure

1. The radiated emissions test was conducted in a semi-anechoic chamber.
2. The EUT was connected to AC power source through a mains power outlet which was bonded to the ground reference plane; The mains cables shall drape to the ground reference plane.
3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum signature data plots of the EUT.
5. The frequencies of maximum emission were determined in the final radiated emissions measurement, the physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.
7.1.3 Measurement Data

Vertical:

<table>
<thead>
<tr>
<th>Item</th>
<th>Freq. (MHz)</th>
<th>Read Level (dBµV/m)</th>
<th>Antenna Factor (dB)</th>
<th>Preamp Factor (dBi)</th>
<th>Cable Loss (dB)</th>
<th>Result Level (dBµV/m)</th>
<th>Limit Line (dBµV/m)</th>
<th>Over Limit (dB)</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.57</td>
<td>30.77</td>
<td>13.24</td>
<td>24.70</td>
<td>0.57</td>
<td>19.88</td>
<td>40.00</td>
<td>-20.12</td>
<td>QP</td>
</tr>
<tr>
<td>2</td>
<td>48.50</td>
<td>46.16</td>
<td>12.89</td>
<td>24.70</td>
<td>0.64</td>
<td>34.99</td>
<td>40.00</td>
<td>-5.01</td>
<td>QP</td>
</tr>
<tr>
<td>3</td>
<td>170.20</td>
<td>36.78</td>
<td>12.28</td>
<td>24.60</td>
<td>1.36</td>
<td>25.82</td>
<td>40.00</td>
<td>-14.18</td>
<td>QP</td>
</tr>
<tr>
<td>4</td>
<td>219.08</td>
<td>36.18</td>
<td>9.11</td>
<td>24.60</td>
<td>1.60</td>
<td>22.29</td>
<td>40.00</td>
<td>-17.71</td>
<td>QP</td>
</tr>
<tr>
<td>5</td>
<td>267.55</td>
<td>32.91</td>
<td>11.34</td>
<td>24.50</td>
<td>1.81</td>
<td>21.56</td>
<td>47.00</td>
<td>-25.44</td>
<td>QP</td>
</tr>
<tr>
<td>6</td>
<td>704.23</td>
<td>27.86</td>
<td>20.52</td>
<td>24.10</td>
<td>3.16</td>
<td>27.44</td>
<td>47.00</td>
<td>-19.56</td>
<td>QP</td>
</tr>
</tbody>
</table>
Horizontal:

<table>
<thead>
<tr>
<th>Item</th>
<th>Freq. (MHz)</th>
<th>Read Level (dBuV/m)</th>
<th>Antenna Factor (dB)</th>
<th>Preamp Factor (dB)</th>
<th>Cable Loss (dB)</th>
<th>Result Level (dBµV/m)</th>
<th>Limit Line (dBµV/m)</th>
<th>Over Limit (dB)</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48.50</td>
<td>43.58</td>
<td>12.89</td>
<td>24.70</td>
<td>0.64</td>
<td>32.41</td>
<td>40.00</td>
<td>-7.59</td>
<td>QP</td>
</tr>
<tr>
<td>2</td>
<td>170.20</td>
<td>41.84</td>
<td>12.28</td>
<td>24.60</td>
<td>1.36</td>
<td>30.88</td>
<td>40.00</td>
<td>-9.12</td>
<td>QP</td>
</tr>
<tr>
<td>3</td>
<td>194.45</td>
<td>37.89</td>
<td>9.52</td>
<td>24.60</td>
<td>1.48</td>
<td>24.29</td>
<td>40.00</td>
<td>-15.71</td>
<td>QP</td>
</tr>
<tr>
<td>4</td>
<td>218.31</td>
<td>45.97</td>
<td>9.12</td>
<td>24.60</td>
<td>1.59</td>
<td>24.29</td>
<td>40.00</td>
<td>-7.92</td>
<td>QP</td>
</tr>
<tr>
<td>5</td>
<td>267.55</td>
<td>38.45</td>
<td>11.34</td>
<td>24.50</td>
<td>1.81</td>
<td>27.10</td>
<td>47.00</td>
<td>-19.90</td>
<td>QP</td>
</tr>
<tr>
<td>6</td>
<td>830.40</td>
<td>38.16</td>
<td>22.44</td>
<td>23.90</td>
<td>3.51</td>
<td>40.21</td>
<td>47.00</td>
<td>-6.79</td>
<td>QP</td>
</tr>
</tbody>
</table>
8 Immunity Test Results

8.1 Performance Criteria Description in Clause 4 of EN 61000-6-1

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion A:</td>
<td>The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.</td>
</tr>
<tr>
<td>Criterion B:</td>
<td>The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.</td>
</tr>
<tr>
<td>Criterion C:</td>
<td>Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.</td>
</tr>
</tbody>
</table>
8.2 Electrostatic Discharge (ESD)

Test Requirement: EN 61000-6-1
Test Method: EN 61000-4-2
Test Date: April 19, 2013
Test voltage: DC 36V
Discharge Impedance: 330 Ω / 150 pF
Discharge Voltage:
- Air Discharge: 8 kV
- Contact Discharge: 4 kV
- VCP / HCP: 4 kV
Polarity: Positive & Negative
Number of Discharge: Minimum 10 times at each test point
Discharge Mode: Single Discharge
Discharge Period: 1 second minimum

8.2.1 E.U.T. Operation

Operating Environment:
- Temperature: 21.0°C
- Humidity: 45.0% RH
- Atmospheric Pressure: 101.4 kPa
Test mode: Running mode
8.2.2 Test Setup and Procedure

1. Contact discharge was applied only to conductive surfaces of the EUT. Air discharge was applied only to non-conducted surfaces of the EUT.
2. The EUT was put on a 0.8m high wooden table for table-top equipment or 0.1m high for floor standing equipment standing on the ground reference plane (GRP).
3. A horizontal coupling plane (HCP) 1.6m by 0.8m in size was placed on the table, and the EUT with its cables were isolated from the HCP by an insulating support thicker than 0.5mm. The VCP 0.5m by 0.5m in size while HCP were constructed from the same material type and thinness as that of the GRP, and connected to the GRP via a 470kΩ resistor at each end. The distance between EUT and any of the other metallic surface excepted the GRP, HCP and VCP was greater than 1m.
4. During the contact discharges, the tip of the discharge electrode was touched the EUT before the discharge switch is operated. During the air discharges, the round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT.
5. After each discharge, the ESD generator was removed from the EUT, the generator is then retriggered for a new single discharge. For ungrounded product, a discharge cable with two resistances were used after each discharge to remove remnant electrostatic voltage. 10 times of each polarity single discharge were applied to HCP and VCP.
8.2.3 Test Results

Direct Application Test Results

Observations: Test Point:
1. All insulated enclosure & seams.
2. All accessible metal parts of the enclosure with discharge resistor used.

<table>
<thead>
<tr>
<th>Discharge Level (kV)</th>
<th>Polarity (+/-)</th>
<th>Test Point</th>
<th>Contact Discharge</th>
<th>Air Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>+/-</td>
<td>1</td>
<td>N/A</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>+/-</td>
<td>2</td>
<td>A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Indirect Application Test Results

Observations: Test Point:
1. All sides.

<table>
<thead>
<tr>
<th>Discharge Level (kV)</th>
<th>Polarity (+/-)</th>
<th>Test Point</th>
<th>Horizontal Coupling</th>
<th>Vertical Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+/-</td>
<td>1</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Results: Pass

Test phenomenon description for the EUT:
1. The EUT working is normal, Before the conditioning.
2. No any change in status of the EUT was observed, during the conditioning.
3. No degradation in the performance of the EUT was observed, after the conditioning.

N/A: Not Applicable (not required by Standard).
8.3 Radiated Immunity

Test Requirement: EN 61000-6-1
Test Method: EN 61000-4-3
Test Date: April 26, 2013
Test voltage: DC 36V
Frequency Range: 80MHz to 1GHz, 1.4GHz to 2.0GHz, 2.0GHz to 2.7GHz
Antenna Polarization: Horizontal & Vertical
Test level: 3 V/m & 3V/m & 1 V/m
Modulation: 80% 1kHz Amplitude Modulated

8.3.1 E.U.T. Operation

Operating Environment:
Temperature: 20.3°C Humidity: 50.0% RH Atmospheric Pressure: 102.4 kPa
Test mode: Running mode
8.3.2 Test Setup and Procedure

1. For table-top equipment, the EUT was placed in the chamber on a non-conductive table 0.8m high. For arrangement of floor-standing equipment, the EUT was mounted on a non-conductive support 0.1m above the supporting plane. For human body-mounted equipment, the EUT may be tested in the same manner as table top items.

2. If possible, a minimum of 1 m of cable is exposed to the electromagnetic field. Excess length of cables interconnecting units of the EUT shall be bundled low-inductively in the approximate center of the cable to form a bundle 30 cm to 40 cm in length.

3. The EUT was initially placed with one face coincident with the calibration plane. The EUT face being illuminated was contained within the UFA (Uniform Field Area).

4. The frequency ranges to be considered were swept with the signal modulated and pausing to adjust the RF signal level or to switch oscillators and antennas as necessary. Where the frequency range was swept incrementally, the step size was not exceeded 1% of the preceding frequency value.

5. The dwell time of the amplitude modulated carrier at each frequency was not be less than the time necessary for the EUT to be exercised and to respond, and was not less than 0.5 s.

6. The test normally was performed with the generating antenna facing each side of the EUT.

7. The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.

8. The EUT was performed in a configuration to actual installation conditions, a video camera and/or an audio monitor were used to monitor the performance of the EUT.
Test Results:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Level</th>
<th>Modulation</th>
<th>Dwell Time</th>
<th>Test Mode</th>
<th>Antenna Polarization</th>
<th>EUT Face</th>
<th>Result / Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>80MHz-1.0GHz</td>
<td>3 V/m</td>
<td>1 kHz, 80% Amp. Mod, 1 % increment</td>
<td>3s</td>
<td>Running mode</td>
<td>V</td>
<td>Front</td>
<td>A</td>
</tr>
<tr>
<td>1.4GHz-2.0GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1.4GHz-2.0GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Rear</td>
<td>A</td>
</tr>
<tr>
<td>1.4GHz-2.0GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2.0GHz</td>
<td>1 V/m</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Left</td>
<td>A</td>
</tr>
<tr>
<td>-2.7GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2.0GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Right</td>
<td>A</td>
</tr>
<tr>
<td>-2.7GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2.0GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Top</td>
<td>N/A</td>
</tr>
<tr>
<td>-2.7GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>2.0GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>Bottom</td>
<td>N/A</td>
</tr>
<tr>
<td>-2.7GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Front: the front of the EUT faces to transmitting antenna (refer to Radiated Immunity test setup photo)

Test phenomenon description for the EUT:

1. The EUT working is normal, Before the conditioning.
2. No any change in status of the EUT was observed, during the conditioning.
3. No degradation in the performance of the EUT was observed, after the conditioning.

N/A: Not applicable.

The EUT does meet the Radiated Immunity requirements of Standard.
9 Photographs

9.1 Radiated Emission Test Setup

9.2 ESD Test Setup
9.3 Radiated Immunity Test Setup
10 EUT Constructional Details

10.1 Exterior of EUT

--End of Report--